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Bayesian Spectroscopy and Target Tracking 

Christopher T. Cunningham 

ABSTRACT 

Statistical analysis gives a paradigm for detection and tracking of weak- 
signature sources that are moving among a network of detectors. The 
detector platforms compute and exchange information with near-neighbors 
in the form of Bayesian probabilities for possible sources. . This can 
shown to be an optimal scheme for the use of detector information and 
communication resources. Here, we apply that paradigm to the detection 
and discrimination of radiation sources using multi-channel gamma-ray 
spectra. We present algorithms for the reduction of detector data to 
probability estimates and the fusion of estimates among multiple detectors. 

A primary result is the development of a goodness-of-fit metric, similar to 
x2, for template matching that is statistically valid for spectral channels 
with low expected counts. Discrimination of a target source from other 
false sources and detection of imprecisely known spectra are the main 
applications considered. We use simulated NaI spectral data to 
demonstrate the Bayesian algorithm compare it to other techniques. 
Results of simulations of a network of spectrometers are presented, 
showing its capability to distinguish intended targets from nuisance 
sources. 

I. Introduction 

For a number of years, the author has been involved with the tracking of moving 
radiation sources using fixed sensors. Up until now, our detectors have been simple 
counters. The analysis of detection events in a simple counter is straightforward, and 
Bayesian estimation has been used in this context for some time.’ The Bayesian approach 
is well-suited to the estimation of the position of a moving object, based on imperfect 
information about it.” Using a network of detectors to monitor the movement of sources 
along known routes is a particularly useful special case”‘, with several possible 
applications, including the tracking of shipments or the monitoring of industrial 
processes. 

Since many different types of radiation sources may be present in such environments, we 
must develop a capability to discriminate the sources of interest for tracking (“true” 
sources) from others (“false” sources). This paper presents our initial development of 
such a discrimination capability. One problem is apparent from the outset, urban sources 
will be weak and will only be seen briefly by fixed detectors. Therefore it is imperative 
that the most sensitive methods possible be developed. Here, the Bayesian approach is of 
great value, since it can be proven to be the optimal scheme in many cases of interest. 
This feature is of use not only in designing discrimination algorithms, but also in 



evaluating other techniques. Similarly, the ability to develop provably optimal methods 
for spectral classification is relevant in a larger context than tracking networks. 

Another aspect of performing spectroscopy on weak sources is that there will probably be 
many spectral channels with few or no counts. In this situation, approximating the 
distribution of spectra as a multivariate Gaussian may not be valid, and this is the basis of 
many classification techniques. My old statistics book advises that one should group 
low-frequency categories together before applying a x2 test, obviously to the detriment of 
the data in these categories. Our Bayesian approach uses Poisson statistics for low- 
frequency events and avoids this difficulty. We shall see that is possible to define a 
generalization of the x2 metric that is similarly untroubled by low-frequency events. We 
will also compare the performances of conventional Gaussian techniques with our 
Bayesian approach. 

ObviousPy, the proof of this classification effort is the performance of a network in which 
there are false sources. We have developed two general Bayesian tracking network 
architectures, in which the tracking function is either performed at a central node or 
distributed onto the detector platforms. These architectures can accommodate a variety 
of detector types, including spectrometers. An advantage of the approach taken here for 
spectrometer networks is that a great deal of data compression is performed at the 
detectors; only high-level probabilistic assessment of the sources present needs to be 
communicated among sensors, not the extensive raw data. 

We simulate a very simple network in which our prototype discrimination algorithm is 
used for tracking a target source in the presence of a false source with a fairly similar 
spectrum. We find that our rejection scheme works very well: network performance 
against the false source alone is indistinguishable from the no-source case. Furthermore, 
the false-source rejection mechanism does not degrade the detection and tracking of the 
target source. 

The paper is organized as follows: 

In Section II we briefly introduce some Bayesian formalism that will be used in the 
remainder of the paper. A detailed discussion of decision-making is presented in the 
Appendices. 

In Section III, we apply the decision-making formalism to spectral observations. 
Discriminating two known spectra, multiple known spectra, and imprecisely known 
spectra are the topics considered. In addition, we compare our results with those for 
some other commonly used techniques. 

In Section IV, we present the details of data fusion in detection and tracking networks 
using spectrometers. We construct a simple network and perform a Monte Carlo 
simulation of tracking in the presence of a false source. Even though the spectra of the 
two sources are quite similar, we find that it is possible to reject the false source nearly 
completely, while maintaining nearly undiminished sensitivity for the true source. 



Appendix A presents a statistical interpretation of Bayesian decision-making. 

Appendix B proves the optimality of the Bayesian likelihood ratio as a decision variable 
for detection. 

11. Bayesian decision-making formalism 

Suppose one measures a system to determine the validity of a number of hypotheses 
which might describe it. For example, the system could be a radioisotope sample, the 
measurements could be the multi-channel readings of a spectrometer, and the hypotheses 
could be the various possibilities for composition of the sample. Or, the system could be 
an environment in which a particular radiation source or sources might be moving, the 
measurements could be the outputs of several radiation detectors and the hypotheses 
could be the type and current location of a source, plus the null hypotheses that no source 
is present. 

A full treatment of the Bayesian decision-making scheme is presented in the Appendices. 
In summary, the fundamental quantity for this analysis is the posterior probability 
PM(h) of hypothesis h for measurements M, PM(h), which is the fraction of elements for 
which h is true in a statistical ensemble of elements for which M is true. PM(h) evolves 
for the ith measurement of value mi according to Bayes’ Theorem 

where p(mi I h) is the conditional probability, or likelihood, of obtaining the 
measurement value fini if h is true. 

In a problem with an obvious null- or reference hypothesis b, such as the “no-target” or 
“background-only” case for radiation detection, one defines the probability quotient 
QM(h) cc PM(h) / P M ( ~ )  and the likelihood ratio r(mi I h) = p(mi I h) / p(m I b). Then, 
from Bayes’ Theorem 

If the measurement likelihoods are independent, we may define an overall likelihood 
ratio R(h) = I I i  r(mi I h) that determines the posterior probability quotient Q(h) from its 
initial value Qo(h): 

The overall likelihood ratio R(h) is proven in the Appendix to be an optimal decision 
variable for the hypothesis h, leading to maximum probability of detection (h is 
declared true for measurements for which h is true), with minimum probability of false 



alarm, (h declared true for measurements for which ho is true). Any monotonic function 
of R(h) will also be an optimum decision variable, such as the logarithmic likelihood 
ratio A(h) E lnR(h). 

111. Single-detector spectroscopy 
1II.A. Likelihoods for known spectra 

A spectrometer measures counts Ci in a number of energy channels i. It might be 
measuring background (the null hypothesis b), for which the expected counts in each 
channel is bi; or else it might be measuring a known source in addition to background 
(the source-present hypothesis s), for which the expected counts are Si > bi. Here, we use 
b (or s) to denote, interchangeably, the set of expected values for background and the 
hypothesis that those values are correct, The likelihood for a measurement of c counts if 
an average s is expected is 

(4) 
-s c p(cIs)= e s /c! 

This may be written using a measure, x2p(c,s) of the “distance” from the observed counts 
c to the expected counts s, assuming a Poisson distribution. We use this notation to 
emphasize its similarity to the conventional x2-measure for Gaussian distributions. (See 
next section) 

p(c i S) = p(c i C) e- Y2 X2P(C,S) 

-c c p(c Ic )=e  e / c !  

So, the overall likelihood is 

The logarithmic likelihood ratio A(s) is 

This ratio may be determined “count-by-count”, rather than using accumulated counts in 
energy channels: In the limit of a large number of spectral channels, the logarithm of the 
likelihood ratio has a particularly simple form 

A(s) = XC ln(sh), - (S-B) (8) 



where S and B are the total source-present and background-only counts expected during 
the interval of observation and ( ~ / b ) ~  is the ratio of source to background count rates 
expected for count c (on the basis of its energy, time of arrival, etc.). This formula has 
the simple interpretation that all spectrometer counts are not equivalent for distinguishing 
the source from background; rather they are weighted by an increasing function of the 
source-present / background-only ratio of expected counts. 

1II.B. Comparison to other multivariate measures 

It is common to approximate the distribution of possible measurement values as a 
multivariate Gaussian. For example, Mitchell’” uses the observed number of counts in a 
channel as an empirical measure of its variance for a x2 test of goodness-of-fit: 

We term this the “Empirical” measure. This expression is not defined for channels with 
ci = 0. Mitchell attempts to correct the variance for low-count channels by averaging 
among nearby channels, a process that we will not attempt to reproduce here. Rather, to 
illustrate the importance of such channels we consider two alternatives: 

“Empirical(-)”: x*E-(c,s) = 0 : c = 0; 

“Empirical(+)”: $E+(c,s) = 2s : c = 0. 

The latter alternative follows from the Poisson distribution (4). 

A corresponding discriminant for source vs. background is, by analogy to A(s): 

This approach invites comparison with a multivariate Gaussian measure. The likelihood 
of measuring c counts for a Gaussian distribution with p. = c? = s is 

Thus, a Gaussian approximation for the overall likelihood for a sequence c of multi- 
channel measurements with expected values s is 



These formulae use a modification to the conventional x2 goodness-of-fit metric to make 
it better reflect the measurement likelihood. The Gaussian approximation to a Poisson 
distribution is not very.good for low numbers of observed counts and expected values, 
but since it is well-defined, we will not attempt to correct it (as we did x 2 ~ ) .  . 

Gosnell" and Keillor'' advocate use of discriminants tied to the principal axes of the 
covariance matrix d i j  of all possible spectral measurements. If there are N spectral types 
k each with weight w k  and expected spectrum ski then the covariance matrix is 

Gosnell employs the Mahalanobis measurevii D2, defined on a reduced set of principal 
axes a, 

We found it necessary to use many axes to get good discrimination performance. If it is 
taken over all axes: 

The corresponding Mahalanobis measure for source vs. background is 

Keillor uses the simple "count error" measure 

on a reduced set of principal axes a. Taken over all principal axes, this becomes simply 
the sum of square errors in observed counts: 

So a corresponding discriminator would be: 



I1I.C. Differentiating two known spectra 

The problem of deciding between two expected spectra on the basis of observed counts is 
equivalent to that of detecting a known source above a known background. The Bayesian 
prescription is to use the likelihood ratio, or equivalently AElnR, as the decision variable. 
This gives maximum probability of detection for constant probability of false alarm, and 
vice versa. (Or, equivalently minimum error in classification of the first spectrum for 
constant error for the second, and vice versa.) 

As a numerical experiment, we use a combination of a simulated NaI spectrum for an 
exemplary shielded isotope with multiple lines (source "Y) and a typical NaI background 
spectrum of fixed strength (background "B"), as provided by Keillor""'. These spectra are 
shown in Figure 1. (The broadness of the lines is largely due to the shielding assumed.) 

10.00 

n w - h 1.00 - a c 
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(II c u 
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I Background only (50 cts) 

Fig. 1. Trial spectra for discrimination. The background is a typical NaI 
detector spectrum of 50 counts total. The source spectrum is a Monte 
Carlo simulation of a particular shielded isotope. The source strength 
shown is 40 counts above background. 

The discriminants AM(s), AG(s), AD(s) may be considered to be approximations for the 
logarithmic likelihood ratio, and may therefore be compared to it as decision variables. 
The measure AE2(s) is also a reasonable decision variable; it is very like AM(s) except for 
its normalization. Additionally, since the total expected counts is greater for the source- 
present spectrum than for background, we can use the total observed counts as another 
decision variable. 

To assess the performance of the various discrimination methods, we drew a large 
number (10,000) of trial spectra from the averages given above and calculated the several 



-___---__inants for each. The decision threshold for each method was adjusted to give 
equal misclassification errors (equal probabilities of detection leakage PDL= 1 - p ~  and false 
alarrn PFA), and the inverse of the resulting error was taken as the measure of 
performance for each method. Results are given in Figure 2. 

-*-Total count 
-+-- Gaussian 

-+-- Count error 

. .e 

Fig. 2. Results for the various discrimination methods. ‘I’he figure of 
merit is the inverse of the misclassification errors (probabilities of 
r’-+ection leakage and false alarms) observed for a large number of Monte 
,dl0 spectral instantiations, with decision thresholds set for equal errors 
(P?L=PFA). Performance improves for all methods as the sniirce stren pth 

reases. (Background is held constant.) 

big surprise is the (excellent performance of the Mahalanobis measure, which 
indistinguishable from that of the Poisson measure. We verified this performance of the 
Mahalanobis scheme in several other 2-spectra problems, always obtaining very nearly 
optimal results. Nonetheless, the Mahalanobis measure relies on a multivariate Gaussian 
approximation for the distribution of measurement results, and that approximation is not 
valid for small numbers of counts. Apparently, the principal-axis approach takes 
advantage of the similar character of many of the spectral channels to construct axes 
along which the expected numbers of counts are not small; so that the Gaussian 
approximation becomes nzroe nearly valid. The main drawback with the technique is that 
its computational complexity is o(N’) for N channels, compared to o(N) for the optimal 
’oisson scheme. 



These optimal schemes outperform the total counts as a discriminator, since they focus 
attention on regions of the spectrum with a large signal-to-noise ratio, rather than treating 
all counts as equivalent for discrimination, a well-known phenomenon. The effect is not 
strong, however, since the source spectrum exceeds background over a large number of 
channels, rather than in just a few sharp lines. (The detection of sources with sharper 
should benefit more from these techniques; as we will see in Section W.C.) 

0.01 

The Gaussian and Empirical schemes take the discrimination problem channel-by- 
channel, and so suffer from the inadequacy of the Gaussian approximation for small 
numbers of counts. The enormous difference made by the zero-count correction to the 
Empirical scheme illustrates that low counts are at the root of the problem. These 
methods do not even perform as well as the simple total-count measure. 

I I I 1 

Another poor performer is the “Count error” metric. It is dominated by channels in which 
the variance in counts is large (the low-energy channels), regardless of whether they 
provide much information for discrimination (as they do not for our example source). 

1II.C. Discriminating three or more known spectra 

In a radiation detection problem, it may not be adequate to determine that a spectrum 
differs from background: There might be other sources in the vicinity besides the target 
one is attempting to detect. Suppose we are attempting to detect the shielded source 
considered above in an environment in which a false source with a similar spectrum is 
present. For an example, we select a false source from Keillor’ simulations that has lines 
at roughly the same energies as the example source and that matches S in total counts. 
See Figure 3. 
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Fig. 3. Monte-Carlo simulation for the spectrum of a false source with 
lines of similar energies to the source of Fig. 2 



Suppose that the strengths and spectra of both sources are known and that it is also 
known that the false source, rather than pure background, is appears a fraction PFS of the 
time. 

By equation (AS) of Appendix A, the ‘corrected’ likelihood ratio R’ for detecting a target 
source S against a “combined background” in which a false source FS is present is 

R(S) 
R(S) = 

l-F’~s + PFS R(FS) 

where R(S) and R(FS) are the likelihood ratios against the “pure background”, as above. 
This is a truly “Bayesian” measure because it uses more information than the simple 
measurements; namely, the probability for the false source PR. 

More conventionally, we might compare the likelihood for the target source with the 
most likely alternative for the combined background, either pure background or the false 
source. In this case the corrected likelihood ratio is 

We term this the “Poisson measure’’ to differentiate it from the Bayesian measure above, 
it uses Poisson statistics but does not make use of knowledge of PFS. 

This technique can be used with the other measures as well, using their approximations 
for the likelihood ratio. 

We performed a Monte Carlo simulation similar to that for Section III.B but in which a 
false-source spectrum was used with PFS = 0.05. The resulting spectra were interpreted 
using all the discrimination techniques discussed above. Results are shown in Figure 4. 

The figure shows that the presence of the false source can have a major detrimental 
impact on the ability to detect the target source if its presence is not anticipated. In this 
case, nearly every appearance of the false source results in a false alarm, since its 
spectrum is unlike the background and quite similar to that of the source; therefore, the 
probability of false ;alarm does not fall much below PES. However, if the false source is 
anticipated, the discrimination can be nearly as effective as if there were no false source, 
using either the Bayesian technique or the Poisson or Mahalanobis maximum likelihood 
techniques. The performances of the Gaussian and Empirical techniques are very sub- 
optimal with a false source. (Compare Fig. 2.) 
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Fig. 4. Compairison of discrimination techniques with an infrequent false 
source. Parameters are similar to Fig. 2. For “No FS” the false source is 
not present, not anticipated, and the Poisson scheme is used. (This result is 
also given in Fig. 2.). For the remaining curves, the false source is present 
with PFS = 0.05. The “Bayesian” curve assumes knowledge of PFS. The 
“Not anticipated” curve applies Poisson discrimination, but with no 
provision for the false source. The remaining curves decide between pure 
background and a false source on the basis of maximum likelihood, using 
various approxi mations for the likelihood. 

The difference between the Bayesian and Poisson maximum-likelihood techn - 
statistically significant, and this lends empirical support to the optimality of the Bay( 
technique. However, in this case there is not much practical difference bet% 
effectiveness of the two. 

riere is a discernable difference between the Poisson and Mahalanobis techniques. We 
jeculate that including more than two sources in the covariance matrix makes it 
12nQropriate for any pair-wise discrimination test. That probably didn’t matter very 

I in this case because the target-source and false-source snectra are verv similar. 



1II.E. Imprecisely known spectra 

The above examples assumed perfect knowledge of the source and false-source spectra, 
which would not be the case in practice. Our uncertain knowledge of a spectrum of type 
S can be quantified as an a priori statistical distribution Ps(s), where s is a set of 
expected channel counts. Then likelihood ratio of S for a given set of measurements is, 
by (A8), 

For example, suppose that the shapes of the source and false-source spectra are known 
exactly, but not their magnitudes, and that these (magnitudes) are distributed in some 
known fashion. We can then repeat the above numerical experiment, randomly choosing 
strengths from the assumed distributions and using (16) to determine the likelihoods. 

However, it would seem that there should be little doubt about the magnitude of a 
spectrum once it has measured. The source or false-source strength can be estimated to be 
the difference between the observed counts and the known expected background counts. 
This estimate could then be used in determining the likelihood ratios for discrimination. 
A similar approach would be to vary the expected source strength to find the maximum 
likelihood ratios for a given observed spectrum, then use those maximum values 

We repeat the analysis of Figure 4, for discrimination with a false source that is present 
5% of the time. In this case, our imprecise knowledge of source strength is simulated by 
varying the source and false source strengths are randomly around an average value. 
(This average is the same for both the source and the false source, as for Figure 4.) The 
actual strengths are uniformly distributed between 0.5 and 1.5 of these averages (30% std. 
error). As in Figures 2 and 4, the decision threshold is chosen for equal discrimination 
errors, and the inverse of this error is used as the measure of performance. Figure 5 
shows the performance for various discrimination techniques as a function of the 
averages of the true ,source or false source strengths. (They are equivalent for this test.) 

The variation in source strength appears to be a major determinant of system 
performance. Much of this effect is not due to imprecise knowledge, however, but 
simply to the presence of relatively weak sources for which the discrimination errors are 
large. For example, sources with strengths between 25 and 75 counts will be present in 
this model for an average source count of 50. The data presented in Figure 4 allows us to 
estimate an overall discrimination error of 0.007 with perfect knowledge of source 
strengths uniformly distributed in this range, and this is not very different than the error 
of 0.01 1 achieved b y  the Bayesian method here. 

More significantly, the figure shows that the Bayesian method is significantly better than 
the others for dealing with uncertainties in source strength. Surprisingly, the next best 
method is that for which the average count values are used to determine the likelihoods, 
ignoring the variation in expected counts entirely. The two schemes that adjusted the 
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5. Discrimination performance for imperfectly known source and 
false s. These vary from 0.5 to 1.5 of their average values, 
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perfectly known. The “Bayesian” curve utilizes likelihood ratios that are 
linear combinations over possible strengths. The “Average counts” curve 
uses the known averages to calculate the likelihoods, ignoring the 
variation in strengths. The “Estimated counts” curve uses the difference 
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IV. Spectrometer networks 

1V.A. Bayesian Tracking Networks 

Our primary focus for this work is to detect, identify, and track radiation sources as they 
move within a network of spectrometers. However, a rather general prescription can be 
given for a detector network to perform these functions, independent of details of the 
specific detectors. We describe two such network paradigms, one in which the tracking 
calculation are idone centrally, and the other in which it is done locally at the detector 
platforms. These paradigms are applicable to any type of sources moving through a 
network of detectors, provided that the distance between detectors is greater that a 
detector’s characteristic range. 

In such a tracking network, we determine Bayesian probability quotients Q(x, t, s) as 
functions of location, time, and source type. These quantities evolve due to our 
knowledge of the source’s movement and also due to our interpretations of detector 
reports. 

The source is idealized as moving between nodes in a “road network”. Such a network 
might represent other terrain as well, such as paths of objects in a factory, or the flow of 
commerce. Each node x, therefore, has only a few well-defined adjacent nodes y in the 
network. We use a movement model in which the movement probabilities p(x, y) for a 
source to move from x to y in unit time, with p(x, x) = 1 - qgX p(x, y). These movement 
probabilities and the measurement likelihoods represent the bulk of our a priori 
knowledge about the system. Such a first-order movement scheme might seem overly 
simplistic, but it has performed very well in fairly demanding problems, such as sources 
moving within a city. 

If P(x, t, s) is the Bayesian probability for source s at x, t, and there are no intervening 
measurements, then 

Since we assume that there are no measurements during this movement, P(t+l,n) = P(t,n), 
for the no-source hypothesis n. Thus, since Q(x, t, s) = P(x, t, s) / P(x, t, n), 

We have already determined the effect of measurements on the probability quotient, so, 
for the measurements M(t) made at time t 

where R(M(t), x, s) is the likelihood ratio for a source s at x, due to all measurements 
made at time t. 



An important feature for radiation detection in a tracking system, in which distances are 
large compared to the ranges of the detectors, is that most measurement likelihoods are 
indistinguishable from those for background. Specifically, we can assume that for the 
likelihood of observing measurement m for s at x, p(m I x, s), is equivalent to the 
likelihood of observing m with no source in the network, p(m I n), unless x is the detector 
at which the measurement m is made. Therefore, if x is not a detector location, 

and if x is a detector location d 

where &(t) includes only those measurements made at d at time t. It is precisely this 
reduction in complexity that motivates use of the likelihood ratio and probability 
quotient. This completes the specification of the evolution of Q(x, t, s). 

In Appendix A we noted that the probability quotient Q is an optimal decision variable 
for detection. Thus, Q(x, t, s) is an optimal decision variable for detecting source s at 
position x at time t, and Q(t, s) = Xx Q(x, t, s) is an optimal decision variable for detecting 
source s anywhere in the network. 

The probability that source s is at (x, t) assuming that s is in the network (“I in”) is 
proportional to its Bayesian probability of being at (x, t) and therefore may be written 

This quantity and Q(t, s) give important location and detection information about possible 
sources and develop with time in response to measurements. 

IV.B. Distributed Tracking Networks 

The tracking scheme is very easy to implement with distributed processing, in which the 
primary probability calculations are done locally at the detector platforms. Such 
distributed processing may be advantageous because information flow to a central site is 
reduced and because information about a particular source travels along with it in the 
network. Thus, a shipment of nuclear material, for example, could be identified at the 
moment it passed the last detector in a sequence of observations, utilizing all available 
information and not requiring notification to and response from a central decision node. 

The only change required to the centralized scheme described above is the movement 
model. In the distributed scheme we do not consider the intermediate locations x, but 
only the detector locations d. Thus, rather than the time-stepping movement model (17a), 
we have an array of movement probabilities between detectors: p(d, d ,  6t) is the 



probability that if a source is at detector d at a given time it will be at adjacent detector d 
after a delay 6t. Finding p(d, d‘, 8t.) from p(x, y) is straightforward. 

In the distributed scheme, when detector d’ computes Q(d’, t‘, s) it sends that quantity to 
an adjacent detector d, provided that Q exceeds some threshold for significance, to reduce 
communications traffic. The calculation at d of new values of Q proceeds as 

Detector d then sends Q(d, t, s) to its neighbors and the process continues. Thus, the 
detector platforms, always “know” the latest values of Q(d, t, s), which is the basis for 
decision-making by them. (At least for the first detection decisions, after that, more 
global considerations might become important.) 

Significant values of Q(d, t, s) are also sent to the central site (or other global monitoring 
sites). Here, they are propagated through the network using the time-stepping movement 
model (17a). The probability map p(x, t, s I y) and overall probability quotient Q(t, s) are, 
thus known at the central site. The central site might advise the detectors of the values of 
Q(t, s), to revise their notions of a “significant” value of Q(d, t, s). 

1V.C. A Spectrometry Example 

Suppose that the target source and false source considered in Section 111 move in the 
simple network of detectors shown in Figure 6. 

0 4 8 
I 
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Fig. 6. A simple network. Sources move in either direction along the 
paths. 





quantified to estimate network performance. The ractor that causes 
,uauuiLy 3tient to degrade between sources is the matrix of transition 

, 6t); a measure of this degradaticn ;s its average ,,,lities p(d, 

For our network, this average is about 0.1. 

‘he opposing factor is the mean of the likelihood ratio when the source is present. We 
saw in Fig. 2 that total counts is not too bad an approximate descriptor of detection 
performance for the source. For a single spectral channel of total source-present counts S 
and background counts B an appropriate average of the likelihood ratio is 
(S/B)’ eB-’, by eq. (4). For B=50 and S=65, this average is about 8, and the product of the 
two factors is about unity, which shows that this is near the transition source strength, as 
we ohw-ved above. 

i s  a measure of tracking performance, we take the conditional location probability 
measured at the source, p(x, t, s I det) = Q(x, t, s) / Q(t, s). Since the typical distance 
between sensors is about 10 units, a probability of -0.1 may well indicate that the source 
; being successfully tracked. (If the source’s probability is spread uniformly in the 

e in Figure 8 for the 
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‘he figure shows that for a source strength of 20 counts, the source is tracked a 
significant fraction of the time, while for a strength of 10 counts it is hardly ever tracked. 
-he strength of 15 counts represents a transition case in thi! gard as well. 



These results includea a false source in the network and false-source rejection in the 
network algorithm, which performed very well. To illustrate this performance, we 
replay this run with a number of different source conditions, with and without false- 
source rejection. Results are given in Figure 9. 

The figure shows that with false-source rejection, the behavior of Q during the run is 
indistinguishable from background if only the false source is present. Similarly, the 
behavior is as for the true source alone if both the true source and the false source are 
present. Significantly, the false-source rejection procedure does not weaken the detection 
:apability. Without false source rejection, that is, without correcting the likelihood ratio 
or its presence as in eq. (14), the false source is very readily detected. In fact, it is easier 
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Fig. 9. Development of Q in the network with background only, false 
source alone, true source alone, and both true and false. Results with the 
discrimination capability disabled are also shown. The event at time 150, 
in which the false source seems to be detected slightly, involved passage 
of both the true and the false source by a detector simultaneously. These 
results are for 15-count sources. 

0th the true source and the false source are present, it is necessary to reject the false 
source so that the true source can be tracked. In Figure 10, we disable this capability and 

w the resulting degradation in tracking performance. 



depends upon the ability to reject the false source. If this ability i, 
compromised, the false source is tracked preferentially in our example. 
and the location probability estimate at the true source falls dramaticallj 
These results are for 15-count sources. 

naa rnree aims in this paper, to develop an agorithm for spectral classification and 
use-source rejection based on Bayesian techniques; to compare Bayesian techniques 
~ + h  current standard methods, which are largely based on a perhaps implicit reliance on 

wian  witkticq. and to demonstrate their performance in a network. 

to define the likelihood ratio for a spectrometer measurement if the 
etected and the spectrometer’s background are known. This quantity is 

asis for spectral classification and data fusion among platforms in the 
Two developments of this concept were pursued: the ‘background’ or null state 

simply the instrumental background but might include expected false 
aources. Lldihoods for these other sources would be included in the background 
likelihood. Similarly, the source state to be detected might not be a pure spectrum either, 
but there might be several source possibilities to include in the source likelihood. We 
saw little performance degradation for these inclusions, but the situation of a very large 
number of source or background possibilities was not addressed. This remains a research 

nterpret the 

vgnt not * 

;sue. One tech ue our examples taught us to avoid was to attempt t 



observations with maximum likelihood models for source or background and then use 
these maximum likelihoods in the likelihood ratio. Exactly why such an appealing 
heuristic technique fails is also a subject for further study. 

We intentionally chose spectra with very low counts per channel to stress discrimination 
methods that rely on Gaussian statistics. Sure enough, such techniques did not perform 
well in our examples, compared to our Bayesian methods that used Poisson statistics. An 
unexpected surprise was the Mahalanobis D2 metric that produced very nearly optimal 
results for our low-count spectra, yet is based on the use of a multivariate Gaussian 
distribution. We speculate that it forms principal axes that combine many spectral 
channels and so overcomes problems with low counts, but this should be investigated. 
The Mahalanobis technique is a bit awkward, since it involves a matrix inversion and 
matrix products. Fortunately, it is computationally no more difficult to use Poisson rather 
than Gaussian statistics when they are appropriate, and we give a generalization of the x2 
goodness-of-fit metric that is valid for low numbers of samples. 

We presented two models for Bayesian tracking networks and constructed a simple 
network example to illustrate the performance of our detection and discrimination 
techniques. We were rather pleasantly, surprised to see our network performing with 15- 
count source strengths above a 50-count background (SNR = 1.4), but our notional 
sensors were relatively close together, so travel-time uncertainties were small. We gave a 
heuristic for estimating network performance that seemed to work well for our example. 
More significantly, our scheme for rejecting a known false source worked very well: 
network performance was indistinguishable from the no-source case when only the false 
source was present. Furthermore, the false-source rejection mechanism did not degrade 
the detection and tracking of the true source. 

These results give us quite a bit of optimism regarding development of an operational 
capability. The next step will be to consider detection of multiple true sources against a 
wide variety of false sources. 
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APPENDIX A: Bayesian Decision-making 

In the Bayesian approach, probabilities are assigned to individual hypotheses. Let E 
denote a statistical ensemble of possibilities (microstates), for the system that agree with 
our current state of knowledge of it (its macrostate). Before any measurements are made 
the ensemble is denoted Eo and its composition reflects our a priori knowledge of the 
system. For example, if we are measuring radioisotopes with a spectrometer, we may 
have some notion of how likely particular types might be, and this would be reflected by 
the relative sizes of the populations of their microstates in EO. As measurements are 
made, our knowledge of the system increases and the composition of the current 
ensemble changes. Let Ei denote the ensemble after the ifh measurement; its microstates 
agree with the a priori knowledge and the fist i measurement results. Thus, Ei CEi.1, 
since some microstates of Ei.1 will not agree with the i* measurement. 

The probability of a hypothesis h in the ensemble Ei is denoted Pi(h) and is the fraction of 
microstates in Ei for which h is true. Thus, Po(h) represents our a priori knowledge of the 
hypotheses; e.g. the probabilities of encountering certain isotopes in our spectroscopy 
example. With no subscript, P(h) refers to the ensemble for all measurements. 

Since the system is being measured to validate one or more of the hypotheses, the 
hypotheses h must be related to measurement outcomes m. This is expressed as the 
conditional probability that m will be observed if h is true, p(m I h), and this is termed the 
Bayesian likelihood of m for h. Note that for this likelihood to be meaningful, the 
measurement results must be assumed independent, provided that h is true. That is, the 
probability p(m I h) cannot also depend upon previous measurement results. This in turn 
implies that the hypotheses h must be sufficiently specific to make them good predictors 
of measurement outcomes. 

Since the p(mi+l I h) is by definition the fraction of the h-microstates in Ei that will agree 
with the next (i+l) measurement, 

If we have a set of hypotheses { h} that are complete and disjoint, i.e. exactly one of them 
is true for each microstate, then we have Bayes’ Theorem: 

However, note that eq. (1) can help us proceed for weaker assumptions on the set of 
hypotheses, or when normalization of probabilities may be computationally inconvenient. 



As a very important example of this, note that in problems for which there is an obvious 
reference hypothesis, or null hypothesis n, we can define the probability quotient for h: 

We define this quantity as a proportionality, rather than an equality, since we probably do 
not know its actual value initially in a detection problem. 

By (l), the evolution of this quotient is 

where r(m, h) is the likelihood ratio form given h: 

r(m, h) = p(m I h) / p(m I n) (A4b) 

Since the measurement outcomes for a given hypothesis are assumed to be independent, 

where R(h) is the overall likelihood ratio given h, 

In Appendix B, we prove that R(h) is an optimal decision variable for the hypothesis h, as 
opposed to the null hypothesis n, based on the entire set of measurements m. That is, the 
classsification scheme, 

h: for R(h) > T; n: for R(h) < T (A6) 

where T is a variable threshold value, gives maximum probability of detection PD with 
minimum probability of false alarm PFA. The probability of detection is the fraction of h 
microstates in Eo that are (correctly) classified as h and the probability of false alarm is 
the fraction of n microstates that are (incorrectly) classified as h. 

The decision scheme (A6) implies that any monotonic function of f(R(h)), is also an 
optimal decision variable: 

f(R(h)) > f(T) # R(h) > T (A71 

In particular Q(h) (=W(h)Qo(h)) and A(h) (=lnR(h)) are also optimal decision variables. 

Classification between any two sets of hypotheses A, B proceeds in a similar manner. An 
optimal decision variable (by the proof of optimality) is 



and a proportional, and therefore equivalently optimal, decision variable is 

where fA or f B  is the a priori fraction for a given hypothesis in the sets A or B: 

Note that for neither of the decision variables R(h) or R(A,B) do the relative probabilities 
of the two classes to be discriminated need to be known a priori. This implies, for 
example, that an optimal detection scheme can be devised for a rare event without having 
to know initially just how rare it is. 

APPENDIX B: Proof of Optimality of the Likelihood Ratio as a Decision 
Variable 

For any decision-making scheme with a well-defined null- or reference hypothesis n and 
a mutually-exclusive test hypothesis h, we define n and h to be the subsets of Eo on 
which n and h are true, respectively. Then the probability of detection P D  is defined as 
the fraction of the elements of h that are (correctly) identified as h. The probability of 
false alarm PFA is the fraction of elements of n that are (mistakenly) identified as h. The 
assertion is that a decision-making scheme that uses the overall likelihood ratio as the 
decision variable will have maximum PD at constrained PFA and minimum PFA at 
constrained PD, compared to any other decision-making scheme that relies only on the 
results of measurement mi. 

If M denotes a set of measurement values, then a decision-making scheme based only on 
measurement values must be an ordered set M={ Mi}. The hypothesis h will be declared 
to be true for a measurement series yielding Mi with i I I, where I is the threshold of the 
scheme, Accordingly, for the threshold I 

since these sums represent the fractions of h and n for which h will be declared true. 

The decision making scheme that we assert to be optimal has R(Mi, h) 2 R(Mj, h) for i < 
j. If this is not true then there must be an optimal scheme M* that has R(Mi*, h) < R(Mc, 
h) for some i* e i‘. Suppose for the threshold I = i*. Then for this scheme 



I' 

We will prove that M* cannot be optimal by constructing an alternative scheme M' that 
has P D ~  > PD*.for PFA' = PFA*. There are two cases, 

In this case, if Mi. is observed h is declared true a fraction f = p(Mi* I n) / p(Mr I n) of the 
time, and if Mi* is observed h is declared false. Thus for this scheme the relations PFA. = 
PFA* and PD' > PD* may be established: 

II. p(Mr I n) < p(Mj* I n): 

In this case, if Mi. is observed it is decided tme, and if Mi* is observed it is decided true a 
fraction f = 1 - p(M? I n) / p(Mi* I n) of the time, and we have, again, 

A decision scheme that has PFA' < PFA* for PD = PD* can be constructed similarly. 
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